Bronchogenic squamous cell carcinoma mass with central photopenia on FDG-PET scan

Vikram Sahni, M.D.; Sebnem Guvenc-Tuncturk, M.D.; Harman S. Paintal, M.D.; and Ware G. Kuschner, M.D.

Affiliation of all authors:
Medical Service, Pulmonary Section
United States Department of Veterans Affairs Palo Alto Health Care System
and
Division of Pulmonary and Critical Care Medicine,
Stanford University School of Medicine

Corresponding Author:
Dr. Ware G. Kuschner
U.S. Department of Veterans Affairs Palo Alto Health Care System
3801 Miranda Avenue
Pulmonary Section, Mail Code: 111 P
Palo Alto, CA 94304
Tel: 650/493-5000 ext. 63544
Fax: 650/852-3276
E-mail: kuschner@stanford.edu

Key words: cancer, cavitation, FDG-PET
Word count: 426
Figures: 2

Received: April 7, 2011
Revised: July 18, 2011
Accepted: July 20, 2011

A 77 year old man underwent chest imaging with a hybrid fluoro-deoxyglucose (FDG) positron emission tomography (PET) / computed tomography (CT) scan. The study demonstrated a five centimeter mass on standard CT images (figure 1). FDG-PET images demonstrated a thick walled mass characterized by intense FDG uptake with a maximum standardized uptake value of 15.9 (figure 2). A large central region of the mass demonstrated photopenia; i.e., normal FDG uptake. Volumetric analysis revealed 30% of the mass showed normal FDG uptake, or photopenia. Biopsy of the mass showed squamous cell carcinoma. The findings are consistent with carcinoma that has outgrown its vascular supply resulting in central tumor necrosis.

Central necrosis is most commonly observed in primary bronchogenic carcinomas of squamous cell origin with one series reporting squamous cell origin in 82% of cases of necrotizing lung cancer. In an analysis of patterns of FDG uptake in lung cancer based on histologic classification, both large cell and squamous cell carcinomas were significantly more likely to demonstrate central cavitation compared with adenocarcinoma.

The pathogenesis of cavitary malignancies has not been fully elucidated. It has been postulated cavity formation in tumors is a consequence of rapid tumor growth that exceeds the supporting blood supply, resulting in tumor necrosis and cavitation. This hypothesis is supported by reports that have shown tumor-associated vasculature inhibition by antiangiogenesis agents causes central necrosis and cavity formation in patients with squamous cell carcinoma of the lung.

The development of cavitation may have clinically significant consequences. Cavitating lung tumors may initially simulate an infectious process leading to delayed work
up, late diagnosis, and presentation with advanced disease. In previous analyses of patient populations with heterogeneous stages of bronchogenic carcinoma, no difference in survival or response to therapy was found between lung cancers with cavitation and those without cavitation.1,6 However, in a more recent analysis of 72 patients with stage I non small cell lung cancer, cavitation within the primary tumor was associated with significantly shorter disease-free survival time and overall survival time.7 In this analysis, cavitary lesions were significantly more common in squamous cell carcinomas than in adenocarcinomas and in epidermal growth factor receptor (EGFR)-overexpressing tumors than in tumors that did not overexpress EGFR. Accordingly, the presence of cavitation may have therapeutic implications in helping identify patients likely to benefit from targeted treatment with an anti-EGFR agent.

In sum, clinicians should be aware that large bronchogenic carcinomas may develop central cavitation and necrosis, likely resulting from compromised vascular supply, resulting in central photopenia on FDG-PET imaging. This finding may have prognostic and therapeutic implications.
References

Figure Legends

Figure 1. Thoracic CT image showing right lower lobe mass.
Figure 2. Hybrid FDG-PET/CT image showing a thick walled mass characterized by FDG uptake with a maximum standardized uptake value of 15.9 in the wall of the mass and central photopenia, consistent with cavitation and central necrosis.